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We examine a system consisting of N classical, Newtonian, perfectly elastic hard 
rods constrained to move on a line. The mass and length of each rod are 
arbitrary. We develop an algorithm which gives, after any given possible 
sequence of collisions, the new velocities of the N rods and a necessary condi- 
tion for any given pair of rods to be involved in the next collision, all in terms 
of the initial velocities of the rods. These results are then used to prove that for 
the case where there are exactly three rods on the line, the maximum possible 
number of collisions among them is the largest integer n such that 
m 2 < (la121t23)l/2/cos[~z/(n- 1)], where m 2 is the mass of the central particle and 
#~2 and ,u2~ are the reduced masses of the left and right particle pairs. We further 
derive for this three-particle case a condition on the initial velocities which is 
necessary and sufficient for k collisions, 1 < k ~< n, to occur, as well as explicit 
expressions for the velocities after each collision in terms of the initial velocities. 

KEY WORDS: Collisions; maximum collision number; classical dynamics; 
one-dimer~sional systems; hard spheres; hard rods. 

1. INTRODUCTION 

T h e  d e s c r i p t i o n  of  the  n o n e q u i l i b r i u m  p r o p e r t i e s  of  d i lu te  gases  i nvo lves  

k n o w l e d g e  of  the  d y n a m i c a l  p r o p e r t i e s  of  i so l a t ed  s u b s y s t e m s  c o n s i s t i n g  

of  a sma l l  n u m b e r  of  gas  par t ic les .  ~1'2~ F o r  a s u b s y s t e m  of  two  pa r t i c l e s  

i n t e r a c t i n g  t h r o u g h  a c e n t r a l  force,  c a l c u l a t i o n  of  the  d y n a m i c s  is 

s t r a i g h t f o r w a r d ,  b u t  even  for  the  t h r e e - b o d y  p r o b l e m  the  c a l c u l a t i o n  

b e c o m e s  qu i t e  complex ,  e v e n  in the  re la t ive ly  s imp le  case  of  classical ,  

N e w t o n i a n ,  per fec t ly  e las t ic  h a r d  spheres .  Li t t le  is k n o w n  e v e n  a b o u t  the  

q u e s t i o n  of  w h i c h  s e q u e n c e s  of  co l l i s ions  a re  pos s ib l e  a m o n g  such  sphe re s  

w h e n  t h e i r  m a s s e s  a n d  d i a m e t e r s  a re  equal .  
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There are, however, known initial conditions which lead to four 
collisions among an isolated set of three such identical spheres, and it is 
known that more than four collisions among them are not possible. ~3"41 

While it is the results for particles moving in three dimensions that are 
of immediate physical interest, ~ it is useful to study the one-dimensional 
case, as some of the results may point the way to progress in the three- 
dimensional case. We call the one-dimensional equivalent of hard spheres 
"hard rods," and it is exclusively with classical, Newtonian, perfectly elastic 
hard rods that we deal in this paper. 

A set of such particles will undergo collisions until the particles are 
arranged on the line running from left to right in order of increasing 
velocity to the right, so that no particle is approaching any other particle. 
From that point on no further collisions can occur. It is known 141 for a set 
of i such particles (of arbitrary lengths, which may differ for different 
particles) that if all their masses are equal, the maximum possible number 
of collisions is (~)= i(i- 1)/2. (For point particles, this has long been well 
known; see, e.g., ref. 5). This is so because in this particular case the 
particles upon collision simply exchange their velocities, and so the set 
of particles simply sorts their velocities according to the binary sort 
algorithm. ~4~ 

We wish to find corresponding results for the case of unequal masses. 
Let us first give a nonrigorous, qualitative account of the results we 
expect. Let us consider a subset of three neighboring particles on the line 
such that the left-hand particle is approaching the right-hand particle, and 
both are approaching the central particle. Elementary considerations 
suggest that the sequence of collisions cannot terminate until the central 
particle of the three has transferred enough momentum from the left-hand 
particle to the right-hand particle so that the distance between the two 
outer particles is increasing. For the case of equal masses this requires 
at least three collisions among the three particles. This follows from the 
number of exchanges of the original particle velocities required to properly 
order the three particle velocities, plus the fact that if there are collisions 
with particles outside the subset of three, the effect of the additional 
collisions will be to cause the pair of outer particles to approach one 
another with still greater speed, requiring transfer of still more momentum 
from the left-hand particle to the right-hand particle. 

If, however, the central particle is more massive than the two outer 
particles, the transfer of momentum from the left-hand particle to the right- 
hand particle is more efficient, so that we may expect fewer collisions to be 
needed to transfer the necessary amount of momentum. If, on the other 
hand, the central particle of the subset is lighter than the outer particles, 
we expect more collisions among the three to be needed to transfer the 
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necessary amount of momentum. As the mass of the central particle 
approaches zero with the mass of the other particles and the initial 
velocities remaining constant, we expect the central particle to have to 
"rattle around" transferring momentum between the outer particles, so that 
the required number of collisions increases indefinitely. 

For the case of only three particles on the line, this means that for 
equal masses we know that a maximum of three collisions is possible; that 
if the mass of the central particle is larger than that of either of the outer 
two particles, we expect that fewer collisions may occur for the same set of 
initial velocities; and that if the mass of the central particle approaches zero 
with the masses of the two other particles and the initial velocities remain- 
ing constant, the number of possible collisions increases indefinitely. 

We now proceed to calculate quantitative results for arbitrary sets of 
masses (and lengths). 

2. D Y N A M I C S  OF H A R D  RODS ON A LINE 

We now give an algorithm for calculating the velocities of each of a 
given number N of hard rods on a line after a given sequence of collisions, 
and a necessary condition for a specific particle pair to take part in the next 
collision after the given sequence. The algorithm requires no knowledge of 
the lengths or positions of the particles, and is useful in examining systems 
with any number of particles; we will also use it in the following sections 
to determine the total number of collisions which take place in the 
three-particle case. 

We let the x direction run from left to right and number the particles 
1, 2 .... from left to right. We write mk for the mass of particle k; the particle 
velocities remain constant between collisions, so we write Vtk j~ for the 
velocity of particle k between the j th  and ( j  + 1)st collision. 

One of the simplifying features of the one-dimensional case is that the 
particles always remain in the same order, so that each collision is between 
some particle which we call i and the particle i + 1 to its right. In examining 
the dynamics of a collision, we therefore need to consider only the masses 
and velocities of adjacent particles i and i +  1. We define the reduced 
masses and relative velocities after the j t h  collision by 

m i m i +  i . U )  ~ 1~(J) - -  . ( J )  
~ '~ i , i+ 1 ~-" ' ~ i , i +  I ~ i  ~ i +  1 

m i W m i + l  

After the j t h  collision particle i is approaching particle i +  1 if and 
only if ,,u~ >0.  This is therefore a necessary condition that the next v i ,  i +  1 

collision occur between particles i and i +  I; it is, however, not a sufficient 
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condition (except in the case of three particles when at least one collision 
has already occurred; see below), since another collision may occur before 
particle i reaches particle i +  1. Whether this occurs depends in general on 
the lengths and initial positions of all the particles as well as on their initial 
velocities, complicating the characterization of the region in phase space 
that leads to a given sequence of collisions among four or more particles. 

If the ( j +  1)st collision does indeed occur between particles i and 
i +  1, the laws of conservation of momentum and energy give us the 
velocities of i and i +  1 after the ( j +  1)st collision in terms of their 
velocities before the collision (see, e.g., ref. 6): 

( j + l ) _  ( j)  212 i ,  i+  l D(j) 
l)i - -  1)i i , i+  1 

m i 

[ ( j +  l )  __ t~lj) q , . 2 / 2 i ,  i + 1  ol j )  
i + 1  - - V i §  ~ i , i +  1 

m i +  1 

The key quantities in the determination of the evolution of the system, 
however, are not the velocities of the individual particles, but rather the 
relative velocities of adjacent particle pairs. As the velocities of the particles 
not involved in the collision between particles i and i + 1 do not change, 
the only relative velocities which change are those involving either particle 
i or particle i + 1. The relative velocities which do change are given by sub- 
traction: 

D ( J + I ) - - o ! J )  + 2 # i ,  i + 1  1~!J) 
i - -  l , i  - -  - t - -  1,i - t , t +  1 

mi 
u ( j +  1) __ __ . ! j )  

i , i + l  - -  -, ' ,1 + I ( 1 )  

v ( J  + l  ) - -  l~(J) _ { _ 2 / d i , i +  10(Y)  
i +  1 , i + 2  - -  - i +  1 , i + 2  i , i+  l 

mi+ 1 

If it is known that a given sequence of j collisions occurs, the final 
velocities of all the particles can be calculated by repeated application of 
(1), giving them as linear combinations of the set of initial velocities vt~ + ~; 
the coefficients will be functions of the particle masses. If any of the o u~ k . k+~  
are then positive, at least one more collision will occur; if, however, more 
than one Vk.k+-U~ ~ is positive, it is necessary to use the initial positions and 
lengths of the particles and follow their trajectories to determine which 
collision will occur next. Since this latter complication does not arise after 
the first collision in the case of three particles, as we will see in the 
following section, we devote the rest of this paper to the case of three 
particles. 
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3. THE THREE-PARTICLE CASE 

For  the case of three particles we assume that at least one collision 
occurs (the distance between the central particle and at least one outer  
particle is decreasing) and assume without loss of generality that  the outer  
particle which takes par t  in the first collision is on the left (particle 1 ). Then 
the first collision is between particles 1 and 2, and �9 co) > 0 necessarily in all u12 
that follows. 

For  the three-particle case the only possible sequences of collisions are 
those which alternate between collisions involving particles I and 2 and 
those involving particles 2 and 3. This is so since each of the two particle 
pairs is moving apar t  after a mutual  collision so that  if j > 0 ,  ,u )  can be ~k,k + 1 
positive for at most  one value of k. This greatly simplifies the problem of 
determining the number  of collisions which occur as well as the relative 
velocities after the j t h  collision, as the lengths and initial positions of the 
particles become irrelevant, as do any velocities other than the relative 
velocities of the two pairs 1, 2 and 2, 3 (the mot ion  of the center of mass 
is irrelevant). We will therefore describe the initial conditions by specifying 
only ,,co) a n d ,  co) Then, according to (1), the velocities v u) after the j t h  ~12 v23. ~,i+ 1 
collision are given by 

= ' )  
12 

3(J) /3(2J--1).~_ 2 /21~2- ( J - 1  ) -  ,,(J - 1  ) ( " 1 2 ~  1/2 
23 = m--2 o 12 -- ~23 + X \~23/' 

(2) 

when j is odd (collision between 1 and 2); and by 

/ ,  \ 1/2 
"-- ,.~ ~23 ( j - - l )  /3(j--1).q_X[l'~23 ~ 

m2 �9 12 ~]"/12J 

3( j  = (j-- 1 } 23 --/323 

(j-- l) 
U23 

(3) 

when j is even (collision between 2 and 3). Here we define x, an impor tant  
dimensionless paramete r  which characterizes the system, as the ratio of 
twice the geometric  mean of the reduced masses of the left-hand and right- 
hand particle pairs to the central mass: x ~ 2(I.l121J23)l/2/m2. Note  for later 
reference that  0 < x < 2; that  x = 1 if all three masses are equal; that  x ~ 0 
corresponds to a central mass much larger than the outer  masses; and that  
x-- ,  2 corresponds to a central mass much smaller than the outer  masses, 
so that, as ment ioned in the Introduct ion,  a large number  of collisions is 
possible. 
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Now if we iterate Eqs. (2) and (3) starting with ,,to~ and ,,to~ we obtain v 1 2  ~ 2 3 '  

,,to~ and ,to~ with coefficients equal the .u~ as linear combinations of v12 ~23, ~ i , i +  1 

to 1, (#1z/#23) 1/2, or (#23/#12) ~/2 times some polynomial  in x. 
We therefore will now discuss the properties of the particular polyno- 

mials involved. 

4. T H E  C H E B Y S H E V  P O L Y N O M I A L S  2 

For  0 < x < 2 and k/> 0, we define the function Sk(x) by Sk(2 COS 0) = 
sin(k + 1 )0/sin 0. For  integer k, a classic result t7~ is that the Sk(X) are poly- 
nomials in x, known as "the Chebyshev polynomials of the first kind," 
which can be given by the recursion relation Sk(X)=xSk_ l(x)--Sk_2(x) 
with S 0 = l  and Sl=x. The zeros of Sk(X) lie at x=2cos[mn/(k+l)] 
where m is a positive integer. As x increases from 0 to 2, 0 = arc cos(x/2) 
decreases from n/2 to 0. The greatest zero of  Sk is at x = 2 cos[rt/(k + 1)]. 
As we will show that the maximum number  of collisions among three hard 
rods depends on the value of x relative to these greatest zeros for integer 
k, we plot in Fig. 1 some values of x such that Sk(x) = 0 when k = 1, 2 ..... 
and the corresponding values of (n/0) + 1. 

We will now give two lemmas concerning the Chebyshev polynomials 
which we will need in the determination of the motion of three hard rods. 

i . e m m a  I. If x is greater than the greatest zero of Sk but less than 
the greatest zero of S~+~, k > 0 ,  then (i) Sk+~(x)<O; (ii) S k + 2 < 0 ;  and 
(iii) for j<<.k, Sj(x)>O. See Fig. 1. 

Proof. x is greater than the greatest zero of Sk if and only if 
0 = arc cos(x/2) < n/(k + 1 ). We therefore have n/(k + 2) < 0 < rt/(k + 1 ), so 
that: 

(i) ~ < ( k + 2 ) 0 <  [(k+2)/(k+ 1)]Tt<2rt ,  
and therefore Sk§ ~ = sin(k + 2)0/sin 0 < 0. 

(ii) n < [ ( k + 3 ) / ( k + 2 ) ] n < ( k + 3 ) 0 < [ ( k + 3 ) / ( k + l ) ] n < ~ 2 n ,  
and therefore Sk + 2 = sin(k + 3) 0/sin 0 < 0. 

(iii) 0 < [ ( j + l ) / ( k + 2 ) ] r t < ( j + l ) 0 < [ ( j + l ) / ( k + l ) ] n ~ < n ,  
and therefore Sj = sin(j  + 1 )0/sin 0 > 0 if j ~< k. 

L e m m a  II. If x is greater than the greatest zero of Sk_2(x), then 
the sequence { - S j _ ~ / S j _ 2 }  with j = k , k - l , k - 2  ..... 2 decreases 
monotonically as j decreases. 

2 "The Chebyshev polynomial is like a fine jewel that reveals different characteristics under 
illumination from varying positions" (Rivlin~S~). 
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Fig. 1. (a) Values of x/> 0 such that Sk(x) = 0 for 1 ~< k ~< 5. The Sk that equal zero for each 
value of x are listed below the line; if an Sk appears in the ruth row, the zero is the ruth 
greatest zero for that value of k. The arrow corresponds to the value of x obtained when the 
masses of the two outer particles are equal and the mass of the central particle equals 3/5 that 
of an outer particle (see point 3 of the Discussion); for this value of x a maximum of four 
collisions is possible. Note for comparison with Lemma I that x is greater than the greatest 
zero of $2, is less than the greatest zero of Sa, and lies between the two greatest zeros of S 3 
as well as those of &.  (b) Values of (n/O) + 1, 0 ~< ~/2, such that Sk(2 COS 0) = 0 for 1 <~ k ~< 5. 
The arrow corresponds to the value of x in part (a). This part of the figure is given to show 
more clearly the relationship between the masses and the maximum number of collisions; for 
each m the ruth greatest zeros of the Sk are equally spaced a distance I/m apart. The maxi- 
mum number of collisions is the integer value to the left of the arrow (four in this case). See 
point 1 of the Discussion. 

Proof. If x is less than the greatest zero of  Sk_ 1, we must treat the 
first term in the sequence [with j = k ]  as a special case. We therefore divide 
the proof  into two parts: (i) the case where x is less than the greatest zero 
of Sk_ 1, and (ii) the case where x is greater than the greatest zero of Sk_ 1. 
We further subdivide case (i) into two parts: in (a) we show that the first 
term in the sequence is greater than any other term, and in (b) we show 
that the terms other than the first decrease as j decreases. 

(i) We first let x be less than the greatest zero of Sk_ 1" 
(a) By L e m m a I ,  the first term (with j=k )  in the sequence of 

{ - S  j_ JSj_ 2 } is positive and so is greater than any negative terms. Also 
by Lemma I, for j < k we have Sj_ 1> 0 and Sj_ 2 > 0. All terms in the 
sequence except j = k are therefore negative, so the lemma follows for this 
special case. 

(b) For  j < k, we note that x is greater than the greatest zero of Sk- 2 
if and only if 0 < n/(k - 1 ). Then, since j ~< k - I and 0 < M(k - 1 ), we have 
that jO < n and ( j -  1 )0 < rr. But then 

d ( l n  SJ-1 ) dj\  ~ =O[cotjO-cot( j-1)O]<O 



896 Murphy 

since the cotangent is a monotonical ly decreasing function of its argument  
between 0 and n. Therefore { - S j _  i/Sj_z } is a monotonical ly increasing 
function of j, and for integral values of j the lemma then follows for this 
case. 

(ii) We now treat the case where x is greater than the greatest zero 
of Sk_ 1. 

We note that x greater than the greatest zero of Sk_ j if and only if 
O<rr/k. Then since j<~k and 0<Tr/k, we again have that jO<Tt and 
( j -  1)0 < n, and therefore that 

d ( In  Sj_ ,'~ = OEcotjO - c o t ( j -  1)03 < 0  
d j \  Sj_2J 

as above, and for integral values of j the lemma then follows in the same 
fashion for this case as well. 

5. T H E O R E M  

The theorem consists of three parts: 

(A) A necessary and sufficient condition that initial conditions exist 
for three hard rods of  arbitrary masses moving on a line to undergo n 
collisions with n > 3 is that x be greater than the largest zero of S._2(x) ,  
that is, 3 

2 
- -  (#12#23) m > 2 cos - -  
m2 n -  1 

or  

(#12/~z3) 1/2 
m 2 <  

cos[~/(n--  1 )3 

Initial conditions always exist for which the rods undergo three collisions. 

(B) Assuming that, according to (A), n collisions are possible but 
n + 1 collisions are not possible, the initial conditions mentioned in (A) are 
given by the following: k collisions will occur, 1 < k ~ n, if and only if 

,(o)~. Sk - t  (~v'~ U2 
_ 1 ~ ( 0 )  

vz3 - Sk-2 \m/la23 ~lz 

Gal'perin ~9~ quotes Zemljakov ~j~ as giving this formula as an upper bound for point 
particles. 
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(C) After the j t h  collision the relative velocities v!~ ) are given by t,t + 1 

12 = 1 - \/~12/ 

v ,J) - -c  ,(o) 4- S . (P '2~  1/2 

v(O) 23 

(4) 

when j is odd, except that v~  ) _ r  .(o). and by = ~ 0  "" 12 ' 

/~23~ ,/2. (o) 

= --~' j-  ~ 23 -- oj_ l \ #23 /  
o) 

(5) 

when j is even. 

ProoL The proof  is by induction. The theorem is first proved for 
j =  1 and j = 2. Then the theorem follows [par t  (i) below] for each odd j '  
from (5), which is assumed to hold for the even value j = j ' -  1, and [par t  
(ii) below] for each even j '  from (4), which is assumed to hold for the odd 
value j = j '  - 1. Note  that whenever we give a proof  for a particular k that 
(B) holds, we have proved that the condition in (A) is a sufficient 
condition, that  is, that initial conditions exist for k collisions to occur. 
In following the proof, it is useful to keep in mind that odd-numbered 
collisions are between particles 1 and 2 and that even-numbered collisions 
are between particles 2 and 3. 

For  j =  1, we need prove only (C), as (B) and (A) are not relevant 
here. After the first collision, (2) gives v ~  = _,(o)v12 -- -So(x)v~ ~ and 

�9 ( 01  
~ 2 3 - - ~ 2 3 -  \ ~ 2 3 ]  v ~ O ) = S o ( X ) V { 2 0 ) ' ~ - S I ( X )  ] A ' 2  I/2 - -  u 1 2  

kP23/ 

which proves (4) in (C) for j =  1. 
We next prove the theorem for j = 2 .  The necessary and sufficient 

condition for the second collision is that particles 2 and 3 be approaching 
one another, i.e., ~23"(1)>0 or  So(x)v~~ ~ which 
proves (B) and therefore (A) for this case. 4 

4 Note for later comparison with the case of general j that since S O > 0 and St > 0. in this case 
(o~ may be <0. I)23 
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We now assume that the second collision has occurred and proceed to 
prove (C) for this case. After the second collision, (3) gives 

= (o)_s2v(]o)+s ~ ~23 ~/2,(o) 
" ' O / t / 1 2  + S I  /)23 - - -  v23 

\/~12/ \/~12J 

= 0 o - 2 3 -  \/123/ v~~ 

which proves (5) in (C) for j = 2 .  s 

(i) We now prove the theorem for all odd ( j  + 1 ). Suppose that it has 
been proven for a given even value of j that  j collisions have occurred and 
that  (5) in (C) holds. In order to first prove that  the condition in (A) is 
necessary, and then prove (B) I-and therefore that the condition in (A) is 
sufficient], we consider separately the two possibilities: (a) x is less than 
the greatest zero of Sj_l ( j > 2  necessarily); (b) x is greater than the 
greatest zero of Sj_ ~. 

(a) Suppose first that  x is less than the greatest zero of Sj_~. Then 
by L e m m a  I, Sj_1 < 0  and Sj<O, since, as will be shown below in (ii), the 
j t h  collision could have occurred only if x is greater than the greatest zero 
of Sj_2. We will also show below in (ii) that  for Sj_l  < 0 ,  the j t h  collision 
could have occurred only i f ,  (o)> 0. But then the condition that  particles v23 

1 and 2 be approaching one another,  i.e., v ~ ) >  0, cannot  be satisfied [bo th  
terms in -~2"u) in (5) are negat ive]  and the ( j +  1)st collision cannot  occur, 
proving (A) for this case. 

(b) Suppose instead that  x is greater than the greatest zero of Sj_ ~, 
so that  Sj_~>O. Then the necessary and sufficient condition for the 
( j +  1)st collision, that  particles 1 and 2 be approaching one another,  i.e., 

1/2 (0) 
, ( 0 ) >  _Sj(~12/~23) /)12' can be satisfied. To  prove v~ )>  0 or, by (5), Sj_ 1,23 

(B) for this case, we then need only divide the last inequality by Sj_ j and 
invoke Lemma  II, which proves that  if/)(2 ~ is great enough to satisfy the 
condition that the ( j +  ! )st collision occur, it also is great enough to satisfy 
the condition that  all previous collisions occurred. 

Before we proceed to prove (C), in order to establish a condit ion 
needed for part  (ii) of the proof  (below), we now suppose that  while x is 
greater than the greatest zero of Sj_ l, it is less than the greatest zero of Sj, 
so that Sj < 0 by Lemma  I. Since Sj/Sj_ ~ < 0, the condition v(l~ ) > 0 can be 
satisfied only if" (o)>0, the requirement we will use below in (ii). v23 

(c) We now prove (C) for ,!J+ Jl ) for the case that the ( j +  1)st colli- --i,l+ 

5 Note for later comparison with the case of general j that in this case S~ >0. 
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sion occurs. After the ( j +  l)st collision, (2) applied to (5) immediately 
yields (4) for v]~+ ~5; for vz3-U+ LI if yields 

o ; j + , 5 =  ( . %  , -  + , 0', ~ 

which in turn, by the recursion relation for the Chebyshev polynomials, 
yields (4) for v~J3 + ,5 

(ii) We now prove the theorem for all even ( j - 1 )  with j >  1. 
Suppose that if has been proven for a given odd value of j that j collisions. 
have occurred and that (4) in (C) holds. In order to first prove that the 
condition in (A) is necessary, and then prove (B) [and therefore that the 
condition in (A) is sufficient], we consider separately the two possibilities: 
(a) x is less than the greatest zero of Sj_ ,; (b) x is greater than the greatest 
zero of g _ , .  

(a) Suppose first that x is less than the greatest zero of Sj_ ~. Then 
by Lemma I, Sj_, < 0 and Sj < 0, since, as we have shown above in (i), the 
j th  collision could have occurred only if x is greater than the greatest zero 
of Sj_z.  We have also shown above in (i) that for Sj_ ~<0, the j th  colli- 
sion could have occurred only if ,,r176 But then the condition that = 2 3  

particles 2 and 3 be approaching one another, i.e., ==3"u1" cannot be 
satisfied [both terms in v~{ I in (4) are negative] and the ( j +  1)st collision 
cannot occur, proving (A) for this case. 

(b) Suppose instead that x is greater than the greatest zero of Sj_ ~, 
so that Sj_~ >0.  Then the necessary and sufficient condition for the 
( j +  1)st collision, that particles 2 and 3 be approaching one another, i.e., 

�9 ( 0 5  v23"{J5/'- 0 or, by (4), Sj_ 1 u 2 3  / "  --Sj(IJi2/I-123) 1/20(t025, can be satisfied. To prove 
(B) for this case, we then need only divide the last inequality by Sj_, and 
invoke Lemma II, which proves that if v~ ~ is great enough to satisfy the 
condition that the ( j  + 1 )st collision occur, it also is great enough to satisfy 
the condition that all previous collisions occurred. 

Before we proceed to prove (C), in order to establish the condition 
needed for part (i) of the proof (above), we now suppose that while x is 
greater than the greatest zero of Sj_ ~, it is less than the greatest zero of Sj 
so that Sj<O by Lemma I. Since Sj/Sj_ , < 0 ,  the condition ~23"u1>0 can be 
satisfied only if v~ ~ >0,  the requirement used above in (i). 

(c) We now prove (C) for ,u+t~ for the case that the ( j +  1)st colli- ~i.i+ 
sion occurs. After the ( j +  l)st collision, (3) applied to (4) immediately 
yields (5) for v u+ ,5; for v]~ +~5 it yields 23  

- Sj_lJvp.  + ( x S j _ l  \~12! ~23 
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which in turn, by the recursion relation for the Chebyshev polynomials, 
yields (5) for , u +  ~) completing the proof. ~ 1 2  

Corollary. I f  . ( o ) _ n  v 2 3 - v ,  the n u m b e r  o f  co l l i s i ons  w h i c h  w i l l  o c c u r  

among three particles is one fewer than the maximum number permitted by 
their masses. 

Proof. If ( j  + 1) is the largest number of collisions permitted by part 
(A) of the theorem, then by (A), x is greater than the greatest zero of Sj_ 
but less than the greatest zero of Sj. Then by Lemma I, Sj_~>O and 
Sj_z > 0, but Sj < 0. It follows that { - Sj_ ,/Sj_z } < 0 but { - Sj/Sj_I } > O, 
and for �9 t~  the condition given by part (B) of the theorem is satisfied v 2 3  - -  

for j collisions to occur but not for ( j  + 1) collisions to occur. 

6. DISCUSSION 

We now make several remarks concerning our results. 

1. The appearance of the Chebyshev polynomials in our calculations 
introduces an angle 0 into the problem. It becomes natural, therefore, to 
characterize a system of three particles by a complex mass m which has 
magnitude mz, lies in the first quadrant of the complex plane, and whose 
real part equals (#~zl~zs) m, the geometric mean of the reduced masses of 
the particle pairs. The phase of this complex mass is then the angle 
0-=arc cos(x/2) we used above, and the maximum number of collisions 
possible is the largest integer n such that n < re/0 + 1 (see Fig. 1). It is not 
clear that this complex mass has any particular physical meaning, but it 
may prove useful in calculations involving four or more particles. 

2. We note that our theorem gives the expected result for some 
special cases: (i) if the central particle is heavier than either outer particle, 
x < 1, 0 > ~/3, and only three collisions can occur; (ii) if all three masses 
are equal, x =  1, O=n/3, and only three collisions can occur; and (iii) as 
the mass of the central particle approaches zero with the masses of the 
outer particles remaining constant, x-- ,2 ,  0 ~ 0 ,  and the number of 
collisions which can occur increases indefinitely. 

3. As a concrete example, we consider the case represented by the 
arrow in Fig. 1. If the masses of the outer particles are equal, and the mass 
of the central particle is 3/5 that of an outer particle, then x = 5/4, So = 1, 
$1 = 5/4, S~ =9/16,  and $ 3 = - 3 5 / 6 4 .  By part (A) of the theorem, four 
collisions can occur, but five cannot. By part (B) of the theorem, exactly 
four collisions will occur if and only " t0~ ~ol if v23/v12 > 35/36. 

4. The contribution of a given collision sequence to nonequilibrium 
properties of a gas mixture (such as transport coefficients) depends on, 
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among other things, the volume of phase space occupied by the set of 
initial conditions which lead to that sequence. ~2) When part (A) of our 
theorem allows at most n collisions to occur, part (B) of the theorem 
provides the ratio of the phase space volume of initial conditions which 
leads to exactly j collisions to the volume which leads to exactly k 
collisions, where 2 ~<j < n and 2 ~< k < n; namely, the ratio 

{ - s / s j _ ,  } - { - s j _  , / s j _ 2 }  

{ - s , / s k _  , } - { - s k _  , / s , _  2 } 

This stems from the fact that the initial positions and the velocity of the 
center of mass are irrelevant to the number of collisions which occur, and 
that the time scale is also arbitrary, so that knowledge of the ratio �9 {o~. ~o~ v23 [v 12 
suffices to determine the number of collisions which occur. In the concrete 
example cited in 3 above and represented by the arrow in Fig. 1, the ratio 
of the phase-space volume leading to exactly three collisions to that leading 
to exactly two collisions is 16/9. 
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